• 1.png
  • 2.png
  • 3.jpg
  • 4.jpg
  • 5.png
  • 6a.png
  • 7.png
  • 8.png
  • 9.png
  • 10.png
  • 11.png
  • 12.JPG
  • 13.png
  • 14.png
  • 15.png
  • 16.png
  • 17.png
  • 18.png

2023 - China - Effect of Pavement Unit Cost Uncertainty in a time of Climate Change

2023 - China - Effect of Pavement Unit Cost Uncertainty in a time of Climate Change

2023 - China - Effect of Pavement Unit Cost Uncertainty in a time of Climate Change

Description

Pavement researchers typically adopt life cycle cost analysis (LCCA) to quantify changes in the economic performance of road pavements due to the effects of climate change. As uncertainty exists in the unit cost of materials, fuels, and machinery operation, the assessment of climate change-induced pavement costs invariably involves uncertainty. If such uncertainties remain unaddressed, the assessment of pavement costs will not be accurate. Therefore, this study develops a stochastic pavement LCCA framework to account for the effects of such uncertainties on climate change-induced pavement life cycle cost. This is achieved by integrating a sensitivity analysis methodology and Monte Carlo simulation. To demonstrate the applicability of the framework case studies are performed for standard interstate and standard primary road pavement sections in four climate zones in the United States under a high climate change Representative Concentration Pathway (RCP8.5) for four different periods between 1981 and 2100. The results show that pavement maintenance, end-of-life (EOL), and transportation costs are most affected by climate change. To assess climate change-induced pavement costs more accurately, it is important to improve the accuracy of gasoline, diesel, and hot mix asphalt (HMA) unit costs, as they are the most sensitive input to the pavement LCCA model

Published on
10 October 2023
Last Updated Date
31-12-2025
File Type
application/octet-stream
Hits
2081 Hits
Download
1943 times
×