• 1.png
  • 2.png
  • 3.jpg
  • 4.jpg
  • 5.png
  • 6a.png
  • 7.png
  • 8.png
  • 9.png
  • 10.png
  • 11.png
  • 12.JPG
  • 13.png
  • 14.png
  • 15.png
  • 16.png
  • 17.png
  • 18.png

2022 - South Korea - Prediction and Detection of Urban Potholes

2022 - South Korea - Prediction and Detection of Urban Potholes

2022 - South Korea - Prediction and Detection of Urban Potholes

Description

The number of potholes in the world has rapidly increased due to the growth of vehicles, temperature changes, and the concentration of the population. Potholes cause danger in driving and reduce passengers' comfort. Therefore, an accurate prediction of number of potholes provides timely maintenance and rehabilitation, and also it enhances safety for drivers. This study aims to improve the accuracy of number of potholes prediction model by considering independent variables such as minimum temperature, relative humidity, precipitation, and traffic volume. The model was established by conducting variable analysis. Various machine learning methods were then employed to develop an optimal model that provides the highest accuracy in predicting pothole occurrence. The study also suggests a computer vision-based system for spotting potholes based on the image segmentation method, followed by calculating the damage ratio. The results confirm that the proposed models have the potential in predicting and detecting pothole occurrence.

Published on
20 December 2022
Last Updated Date
31-12-2025
File Type
application/octet-stream
Hits
1141 Hits
Download
759 times
×